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1. INTRODUCTION ' /1
In the literature, different approaches have been found to
study fallure phenomena in composite materlals. The two most

important approaches may be found in [21].

1.1 Micromechanical approach

In this approach, the starting point is the study of the fail-
ure behavior of the components involved (matrix material fiber and

finally the layers or lamellae).

The fallure behavior of the different layers 1is subsequently
combined into the failure behavior of the complete laminate.

The description of the failure 1n a composite material 1is a
fairly complex task in which complete computer programs must be
used to calculate the strength tension relation. To increase the
practical applicability of such an approach, sometimes a simplified
approach 1s used in which only two points on the stress-tension '
curve are calculated. These are the polnts at which the first fail-
ure occurs in the composite material (comparable to tbe fluid ten-
sion in a metal) and the final failure stress. The last point 1is
determined by a so-called "netting theory" in which it is assumed
that the fibers can only absorb normal stresses. Even in this sim-
plified case, it is hardly possible to apply such failure analyses
for practical engineering purposes. In practical engineering, 1t
is always necessary to obtain, on the basis of simple relationships
between mechanical parameters, an impresslon of the safety of a

structure with regard to fallure.

The inapplicability of the theory applies even more strongly
to the approaches often found 1n the literature in which failure
mechanics and static considerations are used. Especially for glass

fibers (as used in mine detectors) a static approach for the brittle



failure behavior is inadmissible (because of the brittle fallure

behavior).

In [1], we find an overall survey of the study 1n the area of
the micromechanical approach. The same publication also indicates
that the usefulness of the micromechanical approach resides mainly
in the possibility of choosing between different compositions of

the composite materials.

Since for mine detectors the material must be considered basic-

ally firm, here actually this study loses much of its usefulness.

The benefit of the micromechanical study must, within the
framework of the study of the composite material for mine detectors

be sought in the possibilities of achieving by means of these theor-

ies an estimate of the reliability of certain types of experiments.

In the micromechanical approach, the experiments are carried
out in such a manner that only one form of failure occurs. In the
macromechanical approach to be considered further on, much less
attention 1s pald to this.

To make sure that a certain failure criterion gives conserva-
tive results in all cases, however, it is certainly recommended to
conduct experiments also for one failure form so that there is a

clear definition of the moment of appearance of the "failure".

1.2 Macromechanical approach

In the macromechanical approach, the primary purpose is to
achieve a fairly simple criterion presenting the failure of the

total laminate as a function of the load state. The number of cri-

teria formulated in the course of time 1s very large. Revliews of

such criteria may be found in [7,8,9].
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A great drawback of most of the criteria (at least for the
purpose of the study of mine detectors) is that one proceeds a
priori from the hypothesis that the composite material is used in
an optimal manner. This optimal use must be referred mainly to the
stress state. Most failure hypotheses start from the assumption
that the material returns to a plane stress state, and in this sense
tbe failure hypotheses hardly differ from those formulated for the
layers (lamellae).

The best known failure criteria 1n this area are:

5. Maximum stress theory (Stowell, TLiu [19], Jenkins [23]

Here an arbitrary stress is decomposed into components along
the different principal axes of the material.

Failure occurs when one of the stress components becomes higher

than the failure limit corresponding to this direction.

In this connection, no difference is drawn between failures in
tension or in compression, although the procedure itself suggests /3
this. A problem arising in the maximum stress theory is also the
fact that in the region in which transition takes place from one
failure criterlon (for example, tension strength 1In the direction
of the fiber) to another failure criterion (for intance, slip) the

strength 1s over-estimated (see Figures 1, 2 and 3).

b. Maximum tension theory

It is quite similar to the maximum stress theory in which now
the tension in the different directions is considered the decisive
factor. The theory which was proposed in 1966 by General Dynamics,
Fort Worth Division [21], 1is nothing more than the application of

the St. Venant maximum tension theory.
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The overwhelming majority of phenomenological fallure cri-
teria for composite materilals are derived from deformation energy
considerations and in particular the form changing energy.

The basis for this was obtained by Von Mises (1900) for iso-

tropic materials with the formula

» (1)

. 2 2 2y o 2
{ vy - uy)z + (oy - .'72)2 + (o2 —ux)2 B (Txy" tTVT +TIX )= 20,

Although Von Mises had intended the criterion primarily for
the flow of material, in the course of time for metals, it is only

uséd to describe the flow.

In the area of composite materials, nevertheless, the applica-
tion of deformation energy criteria is still maintained to describe
the failure. As long as the materials consldered are brittle, this
is a reasonable starting point. A number of new criteria bhave been
derived from the Von Mises criterion. Strictly speaking, most of
the criteria do not give a real deformation energy, but rather a
relation in stress variants. For con&éhiehce, these criterila are
also called deformation energy because they are mostly an extension

of the Von Mises formulation.

Hi1ll [6] extended subsequently the Von Mises criterion to ani-
sotropic materials in the form:
Floy- ”Z)Zf G( "2'”X)2 + W(ox-o '/)2 + ZLtzyz 4 2Ht7'zx + ZNZZx_j/ =1
in which F, G, H, L, M and N are material parameters.

In this equation (2), it is also assumed implicitly that:

--the material is orthotropic
——there is no difference between tension and compression

strength; with the relation Xt = XC = X Yt = YC = Y, 1t was

then simple to derive:

s
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The six parameters of the fallure criterion are thus deter-
mined entirely by the three tension strengths and the three slip
strengths for the mutually perpendicular directions of the mater-
ial.

To make 1t possible to compare with the following failure
criteria, it is convenlent to write the Hill theory in the follow-
ing form:

Fijoioj =1 i=1,2....0 (u)

The repetition of the sub-indices 1s reduced to the summation
convention in which the sum 1s measured over all the values of the
sub-indices (1 to 6 inclusively).

The term Fij can then be considered as a 6x6 matrix of the

form:

Fij=
__ =
X 2y vy 1 2% x°¥
1 2 TESRUE S US 0 0
15 -1 1 ,
yz ? \'2 22 ¥ (5)
{3
12 n 0 0
7
1
2
L
r?
1
I N
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The greatest drawback of the Hill criterion is that it is /5

impossible to differentiate between tension and compression
strength, while it was Just established for composite materials
that there can be a great difference between the two values.

One of the first attempts to include also the compression
forces of the material in the failure criterion was made by Marin
[10]. The latter used, to this end, the Hill criterion written 1n

the main tensions (indicated for convenlence here as oxl, oyl, czl

[_x‘-'e (u)(1 - <r_y1 ,‘J? 4[}ib(”_vl - arzl)}2 +[l(c(~21 -ux})]?' = 2!0(_\/2

To eliminate the differences in tension and compression, he
modified the relation into:

(m(1 - a)2 * (r;yl - b)2 + (uz1 ~c)2 +

1

gl taxt <o) (oyl ey w(uyt - by (a2t ooy (7)

1 2

(az' = c) (oxl 2 a) | =aby

The difference from the previous Hill relation is actually only

that three terms have been added, specifically, cxl, oyl and ozl.

If the failure criterion is considered as a surface 1n the
six-dimensional stress space, the additlion of linear terms 1in the
failure criterion implies that the origin of the rupture stress

surface 1s shifted.

If we attempt to relate such a failure criterion (with shifted
origin) with mechanical phenomena, this means that it is assumed
that an internal stress is the cause of the difference in tension

and compression force.

From the more micromechanically directed failure investliga-
tions, it is known [1] that the difference in the two strengths is
mostly caused by a difference in the failure mechanism (in com-
pression, it is not the material stress/strength which 1is decisive,

but the danger of cracking the fiber).

6
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The above illustrates the earlier remark that no attempt was
made to describe or explain the faillure mechanisms with the fail-
ure criteria.

A great drawback of the Marin theory is the fact that the
failure criterion is given in terms of main stresses. Such a
direction of the main stress does not have to coilncide with the
main directions (symmetry planes) of the material, see Grescszuk
[2]. The problem is that then the tension/compression strengths
must be known in other directions than the main directions of the
material, to be able to determine the parameters of the failure cri-
terion. Practically, this then raises many problems which the Marin
theory had bardly touched.

The overwhelming majority of later authors recognized the prob-
lem in the Marin theory and have, therefore, deviated from the more
general formulation of the Hill eriterion [51].

Some of these theorles are discussed below.

Tsai and Azzl proposed a simplification of the Hill criterion

by assuming that the composite material 1is normally used in an opti-

mal manner and 1s, therefore, in a flat stress state.

Assuming 03 = 113 = 123 = 0 (5) 1is converted into

i ol o? +—1-072+‘.-,7122=1 (8)
-

) *
2 Y2 ¢

A second hypothesis which 1is often put forward for composite
materials is that a cross-section perpendicular to the fiber direct-
jon should behave isotropically, i.e., ¥ = Z.

Tt is apparent from the comparlson that most pass through the
Tsal-Azzi criterion.

01?2 u1le2 et 1% ©)
ye X‘? Y? TZ

/6
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For the glass fabric composite materials considered here,
this last designation cannot apply directly since the hypothesis
of isotropism in the cross-sectlon is not malntained.

The more general notation (8) should basically be defensible
still were it not that bending any slip may practically also occur

perpendicularly.

A method propbsed by Tsai and Azzi téj to solve this problém
consists in applying the criterion (9/8) by layer (lamella).

But 1t is very doubtful whether this approach can be imple-
mented for practical purposes. It would specifically be necessary

to establish the stress state per layer.

[N

This might be done for composlte materials with exact composi-
tion (winding techniques)(apart from the fact that it would involve
an enormous amount of work). For composites with more arbitrary -
structure, this approach would hardly be reasonable. The reason
why tb?Aapplication of the Tsai-Azzi criterion 1s not reasonable
for the glass fabric conéidéred here is the fact that it is not at
all clear whether the failure in a layer is determined by a flat
stress state. Specifically, the glass fibers in such a layer are
not straight so that the third stress component may also have an
effect.

"

The last drawback of the Tsai-Azzi criterion is the same as
for the Hill criterion and concerns the fact that no differentla-
tion 1s made between tension and compression strength.

For the sake of completeness, another simplification of the

Tsai-Azzi criterion is indicated.

Indeed, In many investigations, it was found that the inter-

action term from (9) olg2 may be eliminated in many cases sO that

2
X
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the Tsai-Azzi criterion is converted into the Norris-Puck

criterion in the form

ﬂ? 4_227 N ;5- -1 (10)

This aspect will be discussed in greater detail further on.

A failure criterion which can avoid most of the above-men-
tioned drawbacks was established by Hoffman [111.

Hoffman also started from the original Hill criterion (2) and
added to this relation a number of linear stress terms to be able

to eliminate the difference between tension and compression:

€102 - o1 402 (03 -al’? w02 (al -02)? (11)

e CAnT 2 C5a2 ¢ CLrd v CT023 0 CEu13% & €Ot = 1

Such a failure criterion has thus nine materlal parameters /8

and therefore a large number of tests are needed to establish these
material parameters. '

With the results of

--three tension tests Xt, Yt, Zt

--three compression tests Xc, Yc, Zc¢ and

--three slip tests Q, R, S the following relationships may
be established:
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C2:1!~L+ 1 1} O0R QuaLrry |
2V Ztlc Xt¥e Yoo
c3- L [ S S
2 'XtXc  YtYce Ztic
4 = -~ - L.
Xt Xc
(5= 1 . 1 (12)
Yt Yc
€6 = 1 - _1_
It Zc
1 -
C7 =
K
1
€8 = -y
R?
1
€9 =
52

[y

The fallure criterion is established completely with these

‘!

nine parameters/tests.

This criterion has a number of remarkable aspects: the fact
that no difference is made between positlve and negative slip
strength. This possibility is left open in many of the criteria
discussed below. It is also doubtful whether thils extension is /9

proper for the orthotroplsm considered here.
It may also be noted that the equation (12) 1s a gquadratic
equation so that the failure surface in the stress space 1s ellip-

tical and convex (with origln not necessarily at zero).

With the definition of the Hoffman criterion practically, the
maximum is retained of the original Hill criterion. But actually

10
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of the Hoffman criterlon it should be stated that this criterion
bas no physical basis but 1s rather a mathematical approximation.
Many researchers have observed subsequently that a problem which
arises with all the criteria considered here consists in the fact
that the failure criteria are defined with regard to the princi-
pal axes of the material.

This implies that, in the calculation of an actual structure,
the arbitrary stress state must be converted to the stress compo-
nents in the main directions of the material.

It may also be established now that the problem is not so im-
portant for the orthotropic glass fabric reinforced composites con-
sidered here. If in this connection we refer to final element cal-
culations, it happens in most cases that the main direction of the

material coincides with the main direction of the elements.

This can also be a problem for other anisotropic materials.
For the sake of completeness, we will also discuss below the approx-
imations in which the conversion of the stress aces is resolved with
respect to the tensorial algebra.

For the purpose of comparison with other failure criteria, con-
sequently the Hoffman criterion is also wriltten again the matrix
form which like equation (4) can also be written as

ol 3 I_i‘:.fi«yj =]

(13)
with i =1, 2...6. ret s 1,0 Lk
Here we have
R N N
<L Xc
R (14)
Yt Ye
! 1
£t lc

11

~
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RS N S WRRPURS S ) .2 O (D SRS SR S BN DY« B
YtNc 2 |Xt¥c  Ytve tZc 2 17tic XtXe  Ytve| o
1 -1 1__+ 1 _y,_l_ ) n 0
YiYe 2 1tYe Itlc  XeXt
1.
1tic 0 ' o] 0
1
QZ
1 t
n?
1
52
d. Tensor polynomials /11

The following failure criteria are purposely no longer cal-

culated to the deformation energy approximation.

Although a number of the theorles can be reduced to deforma-
tion energy in the definition of the failure criterila, the start-
ing point is a purely mathematical description of the failure cri-
terion. The Hoffman criterion can be considered as a transition

area (no tensors are used there yet).

One of the first theories in this area was formulated by

Goldenblat and Kopnov [5] with the relation:

12
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(Fiod) " a (Fijoiady” 4+ (Fidteiogo)) - 1
' (15)
in which once again the summation convention 1s adopted with
regard to the sublndices:

Here it was also assumed:

Fi = strength tensor of the second order
Fij
Fijk

strength tensor of the fourth order

strength tensor of the sixth order

The conversioné of the tensor in the rotations of the axes
are known here from tensorial algebra. The great advantage of ten-
sor polynomials is also the fact that the criterion is defined with
respect to an arbitrary system. Goldenblat and Kopnov have consi-
dered in particular a special case of equation (15) with

a= 1, 5= 1, 'z - =
so that equation (15) is converted 1into:
Fiei 4 \Fijoiny =1 (16)

Tsai and Wu (4) have indicated that the square root in formula (16)
is very impractical, since the result is a + sign. The Goldenblat
and Kopnov criterlon is, therefore, best appllied in the guadratic
form:

Froi o Fideied - (Fiei)l e 1 (17)
But even this form of the Goldenblat and Kopnov criterion is not
much used practically. A problem which arises for this criterion
refers to the definition of the interactlon term Fij.

If these terms are determilned directly wiﬁh eXperlments, it
may occur that the failure surface in the stress space is no longer
closed (elliptical) but is converted into a parabolic or hyperbolic /12
surface which may lead to unrealistic theoretical strength proper-

ties.

This phenomenon was also indicated by Ashkenazi [20]. The
above-mentioned problem becomes even greater if the third power
term (Fijkiojok) is included.

13
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Apart from the fact that in that case a very large number of
interaction terms have to be determined, such a cubic eguation may

often lead to a nonclosed failure surface in the stress space.

To solve the above-mentioned problem Tsal and Wu [4] estab-
lished a criterion which 1is more general than the Goldenblat-Kopnov
criterion, simpler to apply and results in a closed (elliptical)

failure surface in the stress space.

The Tsai-Wu criterion has the form:

8
Fiei + Fioirj =1 (i =1,..... 6) (¥ )

Here, too, the summatlion convention is applied with regard to
the sub-indices. To take into account the fact that the failure
surface i1s elliptical (in the stress state), the following stability
requirements are lmposed:

2 (19)

Fii Fjj - Fij° >0
In this connection, the striking detail is that the original
authors also accepted the equality signs in equation (19), while
the later investigators established, on the basis of a more graphic
interpretation of the failure surface (14), that the equality sign

was not acceptable either.

Tt should be noted that the general equation (16) contains alto-
gether (basically) 42° of freedom (unknowns). This number of
unknowns may be reduced to a considerable extent by assuming that
the Fij terms are symmetrlcal. Such an assumption may be made if
we start from the hypothesis that there is a so-called F(oi) failure
potential. Here the terms Flj are defined by:

Tij = -'“‘2f//5uir"uj =/"?f.,/("lrj/'rri = Fjii (20)

The assumption of a failure potential implies nothing other
than the assumption that the failure phenomenon 1s independent of
the load path. Such a hypothesls is made essentially for all the

14
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above-mentioned failure criteria. How far this assumption is

Justified depends both on the type of material and the phenomenon
described as failure criterion. If the failure criterion is used /13
to describe a kind of fluid limit (or the first point at which a

break occurs anywhere in the laminate), this assumption is generally

valid.

If this criterion is used to describe the final total failure
of the material, the assumption with regard to the independence of
the load path is less valid. In such a case, specifically the filnal
fallure 1s preceded by plaspic deformations which are to some extent
path-dependent. Nevertheless, the failure eriterion may still be
valid for the so-called radial stress paths. 1In this connection,

- radial stress paths should be considered as paths 1in the stress
space in which the corresponding ratlo of the stress components

would remaln the same.

Since the failure criteria formulated in this report must be
considered primarily as a design criterion and not so much a criter-
ion in which very exact predictions must be made on the failure '
stresses occurring, such path-dependent effects may be left out of
consideration preliminarily. The simplification taken then 1s that
the path-dependent effects are included in the safety factors.

With the assumption of formula (20), the number of unknown
parameters was reduced from 42 to 27 (6 for Fi and 21 for Fij). A
still greater reduction in the number of degrees of freedom may be
achieved by starting from orthogonal material properties which 1s

directly permissible here for the materlal considered.

With such an isotropism, it may be stated directly that a con-
nection between the normal and slip stresses may not arise so that
terms such as F16 may be equal to zero. It may also be stated that
if the reference system of axes coincides with the material (strength)
main directions, we have [7]: F4 = F5 + F6 = 0.

15
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In the matrix form, the relation (18) 1s then written as: /14
follows:
Fl Fl11 Fle F13 O Q
F2 F2 F22 O 0
S T B F33 0 0
Fa&& 0 0 (21)
F55 0
J | F6b

The parameters in equation (21) must be obtained again from
tension and compression tests. "Simple" single axis failure tests
may be used for the terms of Fi and for the diagonal terms in Fij.

As an illustration: When loading in direction 1, the following values
are found for tension and compfession strength respectively

ol = Xt and o1 = -Xc (let on the minus sign).

For equation (18/21), we may write
2

Xt Fll + Xt Fi = 1 and
Xc® Fll - Xe Fi = 1
from which it follows that:
-1 _ 1 11 =
Fi = % %o and F11l TEXa v (22a)

By a similar method, we may obtain for the other materlal

directlons

1

2= -1 F22 =
Yt Ye YtYe
1

F3 - L. 1 F33 = 1 (22b)
JA4e FAWAS

Fig = — FS5 = = Fee =
Q R 57

16
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Here 1t may be assumed directly that for the orthotropic
material there is no difference between the so-called positive
and negative slip. '

A comparison of relations (22) with those from the Hoffman
criterion (14) shows that the characteristics discussed up to now
are exactly the same.

The great difference between the Hoffman criterion and the
Tsai-Wu (tensor polynomisl) criterion lie in the definition of the
cross-terms F12, F13 and FZ23.

For the Hoffman criterion, the cross-terms are dependent para-
meters which are established completely if the parameters in equa-
tion (22) are determlned.

In the Tsai-Wu criterion, the cross-terms are independent mat-
erial parameters which bave also to be determined by separate exper-

iments.

The authors of the criterion (Tsal and Wu) conslder that the
advantage of this independence in the cross-terms resides mainly in
the greater flexibility of the criterion to achleve a proper pre-
diction for the failure strength for multiaxial stress states also.
In this connection, Tsai and Wu [7] state that most fallure criteria
describe well the uniaxial failure strengths, but raise problems in
the multiaxial stress state. The similarity of the form of the
Hoffman and Tsai-Wu criteria with regard to the uniaxial fallure
strength seems to confirm this view. But even the more flexible
formulation of the Tsal-Wu criterion leads rather to a shift of the
problem than to its solution. Specifically the problem which now
has to be solved for the Tsail-Wu criterion 1s the question as to
which experiment is most suitable for determining the cross-terms.
The historical developments in thils connection are sufficlently

illustrative.
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The Russian investigators used primarily tension and com-
pression tests on a so-called 45° plank (the material axes form
an angle of U5° with regard to the main axes of the blank).

If for plane 1-2 the experimental results are indicated as
Ut and Ue, we find for F1l2

l
j e~ L 1
r? - .zq |y e (.}._-_1_, _L__l_>- e ( A_l_.+_’-___+,2_)
Uc® 2 ¥t Xc Yt Ye 4 \Xtxe Y¥tY¥c S
or ' (23)
2 L
¥12—»-~?\ } .

11,1 ] wl/ 1 1
R e R et — : ! ",
yts ? Yt Xe Yt ¥c 4 Xthe  Yt¥e S

In [12], Tsai and Wu also indicated that these experiments

were hardly sensitive for a variation in F12 (see Figure 4). In /16

this publication, the authors also say that much better results
may be expected for a positive slip test on the 45° plank. For an
experimentally determined value V, F12 is defined by:

Flo- L lypoye Lo oy e L1y

2ve Yt Yo Yt Yc YiXc  YtYe

(24)

But the practical results seem to be very disappointing, even

for such an experiment.

In [14], Collins and Crane explained with a purely graphilc
interpretation of the Tsai-Wu criterion that the positive slip exper-
iments on 45° blanks probably do not provide the desired results.
This type of slip experiment is indeed hardly used any longer.

An additional problem in the experimental determination of the
cross-terms depends on the fact that the stability criterion (19)
has always to be satisfied. Thus, it can happen very often that
the experimentally determined value cannot be applied to the cross-

terms.

This is illustrated by the results of Pipes and Cole [13] when
the cross-terms F12 are determined with off-axis experiments (exper-
iments in which the material forms an angle with the main axis of the

blank).
18
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Of the four experimentally determined values of Fl12, only one
value seems to satisfy the stability criterla. On the basis of
these results, the conclusion may, therefore, be drawn immediately
that it is impossible to determine the cross-terms wilth these

experiments.

In later publications, especially by Wu [7 and 17] alternative
procedures are proposed to determine the values of the cross-~terms.
In these procedures we start from a really blaxially stressed blank
(stress ol, ¢2). In Wu's procedure, there must be an optimal bi-
axiality ratio B B = 01/02) determined for which the value Fl2 can
be defined.

Unfortunately, the optimal value of B depends on the value of
F12, so that an ilteration process must be used (with the correspond-

ing number of tests).

In the same publications, 1t 1s also indicated that a decision
may be taken to include terms of the higher order (Fijk, Fijkl, /17
etc.) in the failure criterion. This decision depends on the (ex-
permentally determined) value of Fij with regard to the precision
of the solution (determined on the basis of the hypothesis that
the spread in experimental failure experiments 1s, for instance,
approximately 10%). If the value of Fi1j is greater than the preci-
sion of the solution, it will be necessary to include additional
higher terms. This 1is not related to the fact that the situation
becomes even more complicated when these terms of higher order must
be included. Even for these terms of higher order, optimal multi-
axial experiments must be defined with the necessary interaction
work concerned. Moreover, the terms of higher order (Fijk) still
depend on the lower order terms Fij. According to Wu, the Fij terms
can be determined first, after which the determination of the Fijk
terms no longer affects the values of Fij.

The practical calculations in [15] also show that the values
of Fij must be adjusted to a great extent after the determination

19



of Fijk. Tennyson, McDonald and Nanyare used in [15] an actual
hybrid computation technique to be able to describe properly the
interaction between the different cross-fterms. For the purpose of
the intended design (for a material not considered here), such an
effort is totally unwarranted. Therefore, it may be stated immed-
lately that terms such as Fijk must not be included in the failure
criterion. This becomes even more apparent if we recall that the
use of terms such as Fijk implies immediately that the failure sur-
face in the stress space 1s no longer convex with all the related
problems. To sum up, it may be stated that the use of a (Tsai-Wu)
tensor polynomial approximation does give greater flexibility but
that this 1s achieved to a great extent in the form of more complex
experiments. In the experimental determination of cross-terms such
as F12, one should also consider thoroughly the benefit achleved in
the sense of a more exact description of failure under a multiaxial
stress state, as compared with the much more complicated experiments.
The next chapter will discuss this in greater detail.

/18

2. CHOICE OF A FAILURE CRITERION

‘In the last chapter, a large number of failure criteria were
described. For the sake of clarity nevertheless, the number of fail-
ure criteria discussed in this report is limited to the most import-
ant. The literature contains countless variants of these fallure
criteria.

Radenkovic and Boschat [8] have, for instance, converted the
‘Tresca criterion by defining the slip strength as a function depend-

ing on the direction.

Griffith and Baldwin [8,24] bave attempted to reformulate the
deformation energy criterion for general orthotropid materials by
the main stress axes coinciding with the main axes of the material.

;Regafdihg most of the variants of the failure criteria, it may be
"stated that only a more complex mathematical formulation is used

20
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without achieving a gain in flexibility. The overwhelming major-
ity of these criteria are hardly used except for very special com-

posite materlals.
But there are still two exceptions to this rule:

——Franklin [8] proposed extending the Hoffman criterion by
multiplying the cross terms Fl2, F23, F13 in the Fij matrix by an
extra parameter (a, B, v). (Also see Appendix A). This parameter
must then again be determined with a multiaxial test and the basic
philosophy 1s then essentially the same as for the Tsal-Wu criter-

ion.

Shu and Rosen [18] have followed to determined the slip
strengths an approach which is actually no longer part of the macro-
mechanical but rather the micromechanical approach. In this
approach, we use a 1imit load analysis as known from the theory of
plasticity. By defining subsequently a kinematically permissible
displacement field, an upper and lower 1limit are found, respectively

for the fallure load.

The more consistent with reality are the displacement and
stress fields, the smaller the differences between the lower and

upper limits.

In [187], the above-indicated theory 1is applied to a unidirect-
ional material. For the slip strength in plane 1-2 (112), 1t is
apparent that the lower and upper limits can differ at maximum by
27% (see Figure 5) which seems to be a very reasonable approxima-
tion in view of the measurement precision of fallure tests. The

~

same theory seems to furnish less good solutlions for the slip
strength in plane 2-3 (see Figure 6) and the applicability of the
theory to thils case must be considered rather doubtful.

21
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How far the results for Tl2 are applicable for a glass fabric
is not yet quite clear. It should be possible to use basically
the same stress and displacement fields, so that the possibility
of determining one of the failure strengths (S) directly from the
properties of the component sections (glass fiber content, fluld
1limit of the matrix material) should remain open. It would seem
interesting to test this in the future for a practical case.

In choosing a fallure criterion, it must be realized that it
is impossible to establish a failure criterion which applies to all
composite materilals.

This phenomenon is actually known alsc in the "composite

world", and the Tsai-Wu criterion (in which the fallure criterion
is the measure) is, for example, a direct consequence of this.
This cholce of the failure criterion must then be assoclated
directly with the type of composite material. A number of general
requirements can,in each case,be associated directly with the fail-
ure criterion:
1. The criterion must be invariant with respect to the coor-
dinate transformation,
2. 1t should be flexible enough to be able to describe the
experimental results,
3. the criterion'must provide a solution for a certain load
path,
4. the criterion must be mathematically operational.

This means that the criterion must have a simple conversion
between stress space and tension space.

The criterion must also be applicable to strength analyses and
in particular to the method of finite elements.

With these general requirements, a number of marginal notes
may be made with regard to the glass fabric reinforced material con-
sidered here.

22



For 1: TFor the orthotropic material considered here and /20
with regard to the application of the criterion to the finite
element methods, the requirement that the criterion should be

invariant cannot be so important.

For 2: The requirement of sufficient flexibility for the
failure criterion must be related mainly to the question of whether
the eriterion must be able to describe differences in tenslon and
compression properties. Since no compression tests have yet been
carried out on the present material, no definite answer may be given
to this question, but the results in Tables 1 and 2 for comparable
materials indicate that the differences in tension and compression
properties are fairly significant. It is, therefore, stated also
that the failure criteria to be chosen should also be able to des-
cribe differences in tension and compression: The failure criteria
described in the previous paragraph should now be tested for the

remaining requirements 2, 3 and b,

2.1 Maximum stress theory and maximum tension theory

Apart from the problem already indicated that the maximum stress
theory gives an overestimate of the strength properties, both cri-
teria raise very great problems with regard to the conversion of

stress to tension space and inversely (requirement no. 4).

If, for 1nstance, a maximum tension theory 1is converted to the
stress theory, wrong results may occur as shown in Figure 7 (with
arrows). The same thing may happen if a maximum stress theory 1s

converted to the tension space (Figure 8).

Such phencmena are only to be attributed to the partly linear

nature of the faillure criterion.

This effect can already occur for flat stress states.

On the whole, the multiaxial stress states are even more complexé
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Both criteria can be practically much more complicated than
apparent at a first glance and additional stability requirements
must be imposed on the criterion.

For a flat stress state, altogether six stabllity criteria

are needed for the maximum tension theory in the form [7] /21
S16, Xt5 _SI1 ., Xc2 525 . A 522 . X+l
. S X e (25)
S17 Xtl s12 ] 312 Xt2 512 Xe2
S1F  Xe6 _SIL, Xel 565 , XU 526 5 Ktl
S12 Xci Si2 Xcl S16 Xt2  S1A Xt2
526 , Xtb 52, Xcl S6h , xth 526 5 Xcl
S12 Xt?  §12  ¥t2 S16 Xtz S16 - Yc?

These are the terms of the compliance matrix (flexibility
matrix).

For the maxlmum stress theory, also stability requirements
must be imposed in the form:

C16.022 5 ¥c6 L2 » 42

C12 ¢66  Xcl 12— xy1  €te. (26)

Since their relations are no longer used, however, they are
not written out in greater detail here. Further information may be
found in the literature [7] page 381.

It is apparent that the number of stability requirements for
a real three-dimensional failure criterlon becomes so large that

there is no practical possibility of applying the criterion.

The maximum tension and stress theories must, therefore, be
described as practically inapplicablile.

The Hill criterion and the c¢criteria of Tsai-Azzl and Norris-
Puck derived from it are not applicable, since here the differences
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between tension and stress cannot be discounted. In the flat

stress state, this problem is solved to some extent by formulat-

ing the criterion concerned per quadrant in the stress space, while
the corresponding strength numbers are used for each quadrant. 1In
the bi-dimensional case, this operation can sti1l be considered,

but for the three-dimensional case, this leads to very complex for-
mulae, and there 1is also the problem that the surface is no longer
convex so that both requirements 3 (clear solution for a load path)
and 4 (clear conversion from stress to tension theory) are no longer

satisfied.

For these reasons, we must also abandon the inapplicable cri-

teria of Hill, Tsai-Azzi and Norris-Puck. /2.

The great drawback of the Marin criterion is that the direction
of the main stress may coinclde with the maln directions of the
material which for a structure need absolutely not be the case. For
this reason, the Marin criterion does not apply either.

There remain the criteria of Hoffman, Franklin and Tsai-Wu.

The only difference between these criteria is the definition
of the cross-terms Fij (i # j). TFor the Hoffman criterion, the

cross—terms satisfy immediately the stability requirements.

For Franklin and Tsal-Wu, extra attention must be paid to the

stability criteria (19).

Moreover, in the last two cases, rather complicated biaxilal
experiments are needed to determine the parameter values of the

cross-terms.

Before beginning such complicated experiments, we must natur-
ally examine the gain in precision which may be expected with these
criteria (Franklin, Tsai-Wu). This will be considered in particular
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on the basis of the term F12. To simplify the plan to some extent,
the parameter picture of the F12 values 1s subdivided into two par-
fial regions while the value of F12 as follows from the Hoffman
criterion is used as separation (designated hereafter as F12H).

I 0SFij£F12y
This region was studied thoroughly by Narayanaswami [16].

In this investigation in [16], two failure criteria are studied,
specifically the Tsal-Wu criterion with F12 = 0 and the Hoffman cri-
terion. The author determined for different composite materials
and for different load states the failure strengths with the two
different criteria.

On the basis of the results, it was possible to establish that
the difference between the two criteria was never more than 10% in
the extreme case. Since this 10% level is taken in the literature
as a sort of magic limit with regard to measurement precision in
failure expériments, in the publication in question the conclusion
is also drawn that for practical purposes it makes no difference as
to which criterion is applied.

~

Fii»Fi2,
Fij< 0

In this connection, no investigations are known in which the
effect of the cross-terms on the precision of failure strengths was
estimated. But it 1s quite possible to estimate quantitatively the

effect of the cross terms, if we limit ourselves to the composite
material to be used in the mine detectors.

In the first place, one may study the parameter region which
is permissible at maximum for the composite material in question
bhere. This attempt is made in Appendix A. The latter formulates
the cross-terms Fij as a function of the Hoffman parameters in the

form:
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F12 =0 F12y
F23 =YF2ly
F13 = BF13y (27)

By applying the stability criteria, it may be found that:

la] < v 1.5 to 2

(gl <~ 1.1

(y] <~ 1.1

From these numerical values, the conclusion may be drawn that

the boundary values of the cross—terms F13 and F23 are approximately
equal to the values of the Hoffman parameters (as long as Fi1j bhas
the same sign as the Hoffman parameters). - For practical purposes,
the limiting values for tbe'parameters F13 and F23 can be taken as
equal to the Hoffman parameters (orly] =8} = 1 ). The exact exper-
imental determination of the parameters F13 and F23 (in accordance
with the Tsai-Wu or Franklin concept) should imply the biaxial exper-
iments must be carried out in plane 1-3 or 2-3. These experiments
are very difficult (see the.problems in the determination of the
interlaminate tension strength in [25]) and, therefore, proportion-

ately inaccurate (probably inaccuracy more than 10%).

In view of the results of the study by Narayanaswami [15]1, it
can actually be stated also that there is no benefit in determining

experimentally the parameter values of F13 and F23, and that it 1is
best to use for these parameters the Hoffman formulation (14).

For the parameter F12, there is somewhat more latitude with

regard to the Hoffman criterion (Ja] < 1.5 to 2) and in this plane

experiments may be conducted with somewhat bigher precision. /2

But in this case alsc we must expect very spectacular differ-
ences. Indeed, Franklin [8] established that the application of
the Hoffman criterion may give an over-estimation of the strength
in the order of 50% (for the case described by him), but Franklin
corrected thereafter the value of F12 with a value a =-90.53, which
is larger by factors than the possible values for the present
glass fiber material. On the basis of the results of [2] and fie1l,
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the conclusion can be drawn actually that the application of a
Hoffman formulation gives deviations of 20-25% for the cross-term

F12 in the most unfavorable case.

Thereby, this precision may, if desired, be failrly simply
doubled by carrying out a sllp test on a materialxsample under 45°
in the plane 1-2 (see Figure 9). This is then a positive slip test,
of which 1t was already stated earlier that the test is probably
not exact enough to determine exactly Fl12. The test should be
amply sufficient to establish the sign of the F12 term.

To correct the Hoffman parameter F12 for this sign (this does
not affect the stability criteria), the precision is brought back
to within 10%.

To summarize, it may be stated that the stability criteria
impose strength limltations on the cross-terms, such that the inclu-
sion of the test precision 1s amply sufficient to use the Hoffman
criterion.

A possible exception to thils is the cross-term Fi2, but for
this term the precision can be brought rapidly within 10% limits
through a slip test on a 45° blank. The following tests are needed
to determine the failure criterion:

Hoffman criterion: tension tests)
) in directions 1, 2 and 3
compression tests)

slip tests 1n directions 1, 2 and 3
determination of the sign of F12: slip tests on U5° blanks in
the plane 1-2

/26
3. EXPERIMENTS

A number of researchers have applied for purely theoretical

reasons boundary conditions on the type of experiments needed to
determine the failure criteria [1,3,7]. For the sake of completeness
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a number of these boundary conditions are indicated. In [4]3, Wu

imposes two main requirements on the experiments:

- the stresses in the blank must be calculated under the
boundary conditions taken in the experiment
_ the stresses in the blank must be uniform.

Here Wu stated that in the determinations of the parameters
which are defined by overall material properties, thils second
requirement 1is not so important. But if the parameters are deter-
mined by local properties as is the case for the failure, this
second requirement must immediately be satisfied. This implies
practically that experiments with notched blanks are not permlssible.

Another aspect which must be considered in the determination
of the failure criterion is the fact that the criteria to be deter-
mined are valid only for radial stress paths (if there are of
course inelastic deformations before the faillure, which should very
certalnly be the case here). But this implies that the stress 1n
the structure must remain the same 1n regard to the form until the
moment of the total failure, since otherwise a too favorable picture
would be obtained with regard to the failure strength. Practically,
this is due to the fact that one has to test one type of failure per
experiment. For example, it is not desirable that when a failure
ocecurs in a test-bar, the stress distribution should change 1n such
a manner that another failure type is indicated (where the material
is for example much more resistant). It is then useful also after
conducting the test to check whether a type of failure has indeed
occurred. In this connection, tests in the form of bendlng tests

are advised against most strongly.

The number of possible types of experiments is limited too
strongly by the previous boundary conditions. Lenoe [26] and
Whitney [271 have published extensive reviews on the possibility
of accomplishment and the 1imitations of the different types of
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experiments. Although most of the authors arrived at the conclu-

sion that the cylindrical blank is the only one which gives reason-
able results, this conclusion is nevertheless inspired too much by

the desire to be as flexible as possible in the choice of multiaxial /26
stress states. As is apparent from the above, this is also vital

in the application of the Tsai-Wu criterion. But if we limit our-
selves to a Hoffman criterion, this requirement is much less signi-
ficant.

A last aspect to be discussed here 1s the thickness effect
mentioned by a number of authors (see for example [3]). This thick-
ness effect is explained by the fact that for a plate material the
outermost fibers experlence much less support from the matrix mat-
erlal than the central fibers. This effect should occur whenever
the fibers are curved (just as for a fabric). The effect should be
clearly notlceable when the plate thicknesses are lower (less
fibers in the thickness direction) and will lead from thinner plates
to a reduction in the failure strength (see Figure 10). Although
in the mine detector research will be damped for the plate thick-
nesses, it can be Important if thinner plates are removed from the

orlginal plate to undergo tests subsequently.
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Table ! Tersile and Compressive [operties Normal to the Interla—inar Plana??
Material Tension Compressinn
Resin Content . Alndulus of Mavimum NModulies of SN num
Resin Reinforcement (Wea,) Elasticity Siress Elasucity Stress
(ps1) {psi) (ps1)
Epoxy 16! fabric
(Volan finish)* 318 £.35 x 103 2230 142 « 103 593,000
Epoxy Unidirectional .
glass filaments 35.2 1.42 x 103 3390 1.33 x 108 21,600
Epoxy Crossplivd (90%)
class filaments ‘ 311 1.91 % 103 3380 1.8+ < 10* 93,800
Phenolic 151 fabric .
(A1100 finish)* 27,5 1.13 x 103 710¢ 2.07 x 103 80,400
* Trade name for methacryatochromic chleside. ¢ These valucs may be too low becsuse of machininge of tensile specis
® Trade n2ine for y-aminopropyltricthoxysilane, men. For unneched specimens the modalus was 2 ¢ 100 pat 2nd the
strength was 2799 poi,
Table 2 Mechanical Propertics of Fabrie Laminates
Laminaste Dosenption Tetsde Progicries Conmprossion roncrt s Intoslarinar Sheae
- ; R Steenatin Strench Meatilus Modaiun I St N At
Gilasy fu"‘f"r Fahne Rein '(‘m‘::'r,n n‘t\[-’ ) “'.'J-.""’ l::r".['n-) zn‘v‘“«»nl ‘,[.;1 u:"; ?I u".f.'.; u..-‘,..., (et ;vlwl Waep Fill
s a S i arp o , : : W .
tree Treaument Tty by r\\‘-’:;hl lhu::nm [ERTER {hrcvten {Ltc o Warp Falt Vg tu
S HTS 131 Epoxy 28.5-3..6 97.7 95.3 115 3.09 07.4 6+.0 4.60 AR 3040 Jlgll
S 141s 1432 i“poxy 30 1J9s 318 5.52 0.74 79.8 34.2 5.85 2., 3950 2230
E Volan® 1St Fpoxy 28 55.8 52.6 3.16 2.89 9.2 S§2.5 +.22 3.9+ 3350 EEREY)
D HTS ist Fpoxy 3319 350 333 2y 2.57 32.7 49,2 2.55 379 3710 3720
I Velan® I8 Pulyvister 35 48.0 433 T80 — 35.0 30.3 — — — —

* Fainie Construction: Sivic 1811 57 1 54 ends and picksfinch; 0 0085 inches thick; 8 harness satin weave; warp and Bl yarn, 2254,
. Style 143049 %30 cods and picksfinch; 0.007 inches thick s crow funt satin wea se; warp yurn, 22375 fill yarn, 4504,
' Teide narne for methecryatodiramie ¢hloride,

TABLES 1 and

2:

Strength values 1n tension and compression for different
composite materials . [3]
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Figure 1. Comparison between the maximum stress theory and

experimental results [13]

o 4
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Figure 2. Comparison between maximum stress theory and experimental

results reference [3]

35



36

ORIGINAL PAGE |5
OF POOR QuALITY

Figure 5. CH.axis uniaxiat and skear
epoxy cemposie. Solid fines
lires, the maximom sire
from wbular specimens

strengths of graphite-
epresenl our theory! dashed
ss lheory! andg dofs, exgernimental data

Figure 3. Comparisons between maximum stress theory
Tsai-Wu theory and experimental results, reference [4]
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Lower (1) and upper (u) limits of the slip strength

112 (by 1limit load analysis) as a function of the glass fiber
content and the flow limit k of the matrix material
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Figure 6.
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Lower (1) and upper (u) limit of the slip strength

123 (by load 1limlt analysis) as a function of the glass fiber
content Vf and the flow limit k of the material of the matrix
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Figure 7. Maximum tension theory in the stress space
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Figure 8. Maximum stress theory in the tension space
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Figure 9. Material sample (in the plane 1-2 plane)
to determine the Fl2 cross-terms with regard to the
slip test
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APPENDIX A Stabllity for the Franklin criterion /Al

Stability for the PFranklin Criterion

The starting point may be the Hoffman criterion, which may
be written in its simplest form as follows (as regards the quad-
ratic terms)

2 + (3 -C3 -C2 0

=2

0
Cl+¢ ¢ o 0 ¢
Cl+c2 0 0 0
m o o |=f
0
P

Franklin attempted to achieve a better consistency for a
multiaxial stress state by introducing three additional parameters
a B Y through which the relation (a-1) is converted into:

) P S S S S
- ' Cl + €3 ¢l 0 00
etz 0 0 0 | (a~2)
n 0 0
n 0
L ‘ p -

To have a closed convex failure surface In the stress state,
the Franklin theory must also satisfy the stability criteria as
defined in the Wu theory (tensor polynomials)

Fii Fij - Fij2 2 0 (a-3)

Thls stability criterion 1s used to have an estimate of the
magnitude of the new parameters introduced
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Substituting (a-8) in (a-7), we find

(2-8) substitueren in (a-7) levert
- r ar
(-8 s 202 32,8 (2
2 i (a=9)
1 - % -5, 5 0
4
9-.)2,.0 —3 ,’) 9. :1!'2
4 A 2

———

When choosing the relation between Xt and Zt, we must start
from the maximum value of Zt as shown in the paper by Tegelaar
(Experimental Determination of the Material Propertles of Glass
Fiber Reinforced Polyester; IWECO Report no. 5072020-78-1). To
study the effect of these relations on the value of &, a second
case 1s considered:

Xt % 20 zt
1 1

so that Ui = — ancl3 = =
itZc 2

20itic Itlc 20

2 o1 ' -2 (2-9)

The substitution of (a-9) in (a-7) gives

n

(-0 9y 3% v 2 20 (2, 800 (2 o
9 81
or 0*viel 1 - 4}2 ::’_69 + ﬁ.o_q - 0
81 81
1+ 40 -(12> 0
81
o (a=10)
0t 121 vape o o
81 9

Thus tbé Vélue of oo is lower 1in this case.

In the preceding, very little attention was paid (necessarily)
to the compression strengths.

It may be established directly that Xe<Zc since the pressure

in the X-direction possibly causes the fallure mechanism to be

by



ORIGINAL PAGE IS
OF POOR QUALITY

determined by the cracking of the fibers, while for the pressure
in the Z direction, the failure of the matrix material will pre-
dominate. The conéequence of this difference between Xc¢ and Zc is
that the maximum permissible value of a is again somewhat bigher.

But it may well be doubted whether Xc and Zc show a very great
difference and in this sense, it may be expected that the shifts in
the maximum will not be spectacular for a. It may be said prelimin-
arily that -2 < a < 2 seems to be most applicable for the material

in question here for a.

ITI Parameter B

2
F1l £33 - F137 0

( 3 2 ~5¢ '

€2 f3) (C ) - 47 L2

; z RIS ‘ ? ’ , (a-11)
€% . 203 4 CIC3 + CI1C2 - 37 €270

(1 -5 C2° 1 (202« €103 1 CI02 -0

If we use once agaln the relations (a-6) equation (a-11) is con-

verted into

(a-l\)zovm'?m ) b

(1 -3 )C2'+?C2C3+C2 =0 A
.'1 2 e .

(2 - 5%) C2% + 2€2C3 - 0 " (a-12)

The substitution of (a-8) gives

] L
(2 -.%) 224222 %o
5
2—.‘3? -4 0
5
— (a=13)

‘)?ig \9‘

5 s < 5'

The substitution of (a-9) gives

55



ot

01
(LT-%) L7 N il pue |

:L£TTeoTJTo0ds ‘g sS® onIeBA SWES 3yj
sB(y A 3BY3 SMOYS (ZT-®) pu® (9[-B) SuUOl3BIaZ JOo uosiaedwoo y

( ) 0« 20¢ + .2y {Li-2)
91-® b e
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o 7 %

SOAT3 (9-B) SUOT4BISJI 243 JO UOT4N3TASQNs aYJ,

0- 2212 + €320 + €317 + 219 Amg -1)
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Consequently, it cannot be stated that for the Hoffman cri-

terion o = B = vy = 1.

These values thus satisfy directly the stability criteria;
It may also happen that the maximum values of f and vy are 2:1.095.
When it is recalled also that most of the experimenters state that
the strengtb values bhave a 10% spread (Wu also uses this percentage
in [7] to determine the precision of the tensor polynomial), it may
be stated a priori that the maximum values of B and y can be esta-
blished as 1 just as well.
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